Common Fixed Point Theory in Modified Intuitionistic Probabilistic Metric Spaces with Common Property (E.A.)

نویسندگان

  • Asiyeh Nematizadeh Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Shahrekord, P.O.Box 88186-34141, Shahrekord, Iran.
  • Hamid Shayanpour Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Shahrekord, P.O.Box 88186-34141, Shahrekord, Iran.
چکیده مقاله:

In this paper, we define the concepts of modified intuitionistic probabilistic metric spaces, the property (E.A.) and  the common property (E.A.) in   modified  intuitionistic probabilistic metric spaces.Then, by the commonproperty (E.A.), we prove some common fixed point theorems in modified intuitionistic Menger probabilistic metric spaces satisfying an implicit relation.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

COMMON FIXED POINT THEOREMS IN MODIFIED INTUITIONISTIC FUZZY METRIC SPACES

In this paper, we introduce a new class of implicit functions and also common property (E.A) in modified intuitionistic fuzzy metric spaces and utilize the same to prove some common fixed point theorems in modified intuitionistic fuzzy metric spaces besides discussing related results and illustrative examples. We are not aware of any paper dealing with such implicit functions in modified intuit...

متن کامل

Common fixed point theorems in modified intuitionistic fuzzy metric spaces with common property (E.A.)

* Correspondence: [email protected] School of Computer & Systems Sciences, Jawaharlal Nehru University, New Delhi 110 067, India Full list of author information is available at the end of the article Abstract In this article, we utilize the notions of the property (E.A.) and common property (E. A.) in the setting of modified intuitionistic fuzzy metric spaces to prove a result interrela...

متن کامل

common fixed point theorems in modified intuitionistic fuzzy metric spaces

in this paper, we introduce a new class of implicit functions and also common property (e.a) in modified intuitionistic fuzzy metric spaces and utilize the same to prove some common fixed point theorems in modified intuitionistic fuzzy metric spaces besides discussing related results and illustrative examples. we are not aware of any paper dealing with such implicit functions in modified intuit...

متن کامل

Common Fixed Point Theorems in Intuitionistic Fuzzy Metric Spaces

In this paper, we introduce the concept of ∈chainable intuitionistic fuzzy metric space akin to the notion of ∈chainable fuzzy metric space, introduced by Cho, and Jung [6] and prove a common fixed point theorem for weakly compatible mappings in this newly defined space.

متن کامل

Common fixed point of multivalued graph contraction in metric spaces

In this paper, we introduce the (G-$psi$) contraction in a metric space by using a graph. Let $F,T$ be two multivalued mappings on $X.$ Among other things, we obtain a common fixed point of the mappings $F,T$ in the metric space $X$ endowed with a graph $G.$

متن کامل

Coupled common fixed point theorems for $varphi$-contractions in probabilistic metric spaces and applications

In this paper, we give some new coupled common  fixed point theorems for probabilistic $varphi$-contractions  in Menger probabilistic metric spaces.  As applications of the main results, we obtain some coupled common fixed point theorems in usual metric spaces and fuzzy metric spaces. The main results of this paper improvethe corresponding results given by some authors. Finally, we give one exa...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 13  شماره 1

صفحات  31- 50

تاریخ انتشار 2019-02-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023